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Abstract 

Despite the intrinsic difference from the point of 
view of structure of various types of crystals, such as 
commensurate, incommensurately modulated, inter- 
growth crystals and quasicrystals, a common 
approach to their symmetry seems to be possible 
which eventually will lead to a more comprehensive 
crystallography. The unifying elements become 
apparent through treatments which, at first, seem to 
be contradictory with the geometry of the crystal 
structures involved. Examples are the description of 
aperiodic crystals in terms of lattice-periodic struc- 
tures (going beyond three-dimensionality), the 
investigation of scaling symmetry in quasicrystals by 
means of a Z-module of translations generating a 
dense set of translationally equivalent atomic posi- 
tions (going beyond discreteness) and finally the 
characterization of Euclidean properties of normal 
crystals through non-Euclidean symmetries (going 
beyond Euclidean metric). These changing 
approaches do not modify, however, the fundamen- 
tal nature of crystals to be three-dimensional, dis- 
crete and Euclidean. They only allow implicit 
symmetry groups like the superspace groups 
(unifying the crystallography of incommensurate and 
commensurate crystals) and the multimetrical space 
groups (unifying the possible symmetries of quasi- 
crystals and normal crystals) to be made explicit. 
Aspects of crystal diffraction, morphology and crys- 
tal structure are presented from this unifying point of 
view, without intending to cover the whole crystal- 
lography. 

1. Introduction 

During the last 20 years the experimental evidence of 
the existence in nature of new types of crystal struc- 
tures, such as incommensurately modulated, inter- 
growth crystals and quasicrystals, profoundly 
modified the views about the very basic concepts of 
what is a crystal and which are the crystallographic 
symmetries of an ideal crystal structure. 
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Crystals need not be lattice-periodic, so that one 
currently speaks of aperiodic crystals, examples of 
which are the incommensurate crystals. It is clear 
that the association of the two words aperiodic and 
crystal implies implicit mutual restrictions and exten- 
sions. In a number of cases these relations have been 
made explicit and precise through the characteri- 
zation of the corresponding symmetry groups. This 
development started from the modulated crystals, 
leading to (3 + d)-dimensional superspace groups, 
basically connected with the existence of a set of 
main reflections of an underlying basic (or average) 
structure with lattice periodicity (Janner & Janssen, 
1977, 1979; de Wolff, 1974, 1977; de Wolff, Janssen 
& Janner, 1981). The same approach could also be 
applied to intergrowth (or composite) crystal struc- 
tures, despite the fact that in this case more than one 
set of mutually incommensurate main reflections 
occurs (Janner & Janssen, 1980a,b; Kato, 1990; Kato 
& Onoda, 1991; Petricek et al., 1991; Van Smaalen, 
1991; Yamamoto, 1992, 1993). Quasicrystals were 
first recognized as having long-range order and a 
diffraction pattern with a noncrystallographic point- 
group symmetry (Cahn, Gratias, Shechtman & 
Blech, 1984). Amazingly enough, the same super- 
space approach could be applied to their structure 
analysis, even without a lattice of main reflections, 
because a lattice is incompatible with a non- 
crystallographic point group (Bak, 1985; Janssen, 
1986). A new type has to be added, consisting of 
what we may call algorithmic crystals because they 
are obtained by molecular beam epitaxy of crystal 
planes stacked according to a given sequential 
algorithm, such as that of Fibonacci or Thue-Morse 
(Axel & Terauchi, 1991; Karkut, Triscone, Ariosa & 
Fischer, 1986; Merlin, Bajema, Clarke, Juang & 
Bhattacharya, 1985; Terauchi et al., 1990). More can 
be expected in the future. This all underlines the 
open character of crystallography at present. 

The originally defined superspace groups, fully 
classified in the (3 + 1)-dimensional case (Janssen, 
Janner, Looijenga-Vos & de Wolff, 1992; de Wolff, 
Janssen & Janner, 1981), are inadequate to describe 

Acta Crystallographica Section B 
ISSN 0108-7681 ~.31995 



A. JANNER 387 

the symmetry of all these new types of crystals. 
Nevertheless, a common approach seems to be pos- 
sible which eventually will lead to a more com- 
prehensive crystallography. The stage of conceptual 
simplicity has not yet been reached. What is pre- 
sented here is a personal view only, as reflected in the 
literature quoted. Extensive lists of references can be 
found in some books (DiVincenzo & Steinhardt, 
1991; Janot, 1992; Jari6, 1988; Senechal, 1994; 
Steinhardt & Ostlund, 1987) and review papers 
(Cummins, 1990; Janssen & Janner, 1987; Janssen, 
Janner, Loijenga-Vos & de Wolff, 1992; Le Tu Quoc 
Thang, Piunikhin & Sadov, 1993; Steurer, 1990; Van 
Smaalen, 1992, 1995). 

The unifying fundamental element presented here 
is a finitely generated group of symmetry translations 
leading to a 7Z-module structure of both the Bragg 
peaks and of the translationally equivalent atomic 
positions.* This simplifying assumption (counter 
examples can be given where the ~Z-module structure 
only occurs either in the reciprocal space or in the 
direct space) is general enough to include lattice 
periodicity as a special case and to allow a common 
symmetry approach for commensurate and incom- 
mensurate crystals (Kato & Onoda, 1991; Perez- 
Mato, 1991; Petricek et al., 1993; Van Smaalen, 
1987; Yamamoto, 1981). In the incommensurate 
case, the important new feature is the possibility of 
generating a dense set of symmetry-equivalent 
points. Discreteness is imposed by physical con- 
straints only. For the atomic positions it is, like 
finiteness, more connected to growth conditions and 
atomic sizes than to crystallographic symmetry. For 
the Bragg peaks it is allowed because of a decreasing 
intensity distribution. 

The Z-module structure of the translations opens 
not only the possibility of noncrystallographic point 
groups, but also of rotations of infinite order (Le Tu 
Quoc Thang, Piunikhin & Sadov, 1993) and of 
scaling symmetries [involving non-Euclidean trans- 
formations (Janner, 1991a, 1992)]. Lifting the 7Z- 
module to a lattice (of higher dimension in the 
incommensurate case) allows an n-dimensional crys- 
tallographic formulation which is, however, richer 
than the Euclidean crystallography in n-dimensions, 
even in the case of commensurate crystals (Janner, 
1991b,c). 

Aspects of crystal diffraction, morphology and 
crystal structure will be presented from this unifying 
point of view. For the diffraction, only the cases for 
which a finite indexing of the Bragg peaks is possible 
are considered. Algorithmic crystals, like the Thue- 
Morse one (Axel & Terauchi, 1991), are excluded 

* The  elements  o f  a Z-module  o f  rank  m can be expressed as 
integral linear combina t ions  o f  m vectors  defining the basis o f  the 
;£-module. These basis vectors  need not  be linearly independent  
over  I~ as it is required if the/ ,{-module is an m-dimensional  lattice. 

here. Concerning morphology, dendritic and fractal 
crystal growth forms are also disregarded, and only 
forms limited by flat facets are considered. The 
discussion of crystal structures is based on the dis- 
tinction between a real and an ideal structure. In 
both cases, imperfections or defects are excluded. By 
ideal we mean a geometric object defining an atomic 
arrangement in terms of a set of symmetry- 
equivalent positions (point-like), whereas a real crys- 
tal structure consists of existing atoms. An ideal 
crystal with space-group symmetry is always infinite, 
whereas a real crystal is always finite. In the incom- 
mensurate case an ideal crystal structure is lattice- 
periodic in a higher-dimensional space (which need 
not be Euclidean), it possibly forms a dense set of 
points in a lower-dimensional space, whereas a real 
crystal consists of atoms (and not of points), is 
three-dimensional, Euclidean, discrete and finite. The 
symmetry of a real crystal is considered to be that of 
the corresponding ideal structure. Which ideal struc- 
ture one has to adopt depends on the crystal proper- 
ties considered. 

The aim of the present paper is to illustrate how 
this distinction between real and ideal (according to 
Aristotle one would distinguish between actual and 
potential) allows three-dimensional crystallography 
to be extended to higher dimensions, to go beyond 
discreteness and even go beyond Euclidean metric 
(Janner, 1992). 

The approach adopted in the following is always 
the same. It consists of identifying hidden symme- 
tries in crystals in a way which, at first, seems to be 
contradictory with the geometrical structure of the 
given crystal, like the description of aperiodic crys- 
tals in terms of lattice-periodic structures, the investi- 
gation of scaling symmetry in discrete atomic 
systems (which cannot be self-similar) and finally the 
characterization of non-Euclidean symmetries in 
crystals (which do have an Euclidean structure). 

All these developments did not follow from a wish 
to be original, but reflect mathematical structures 
which allow a description of crystals occurring in 
nature in the attempt to deduce physical properties 
from algebraic structures expressed in terms of suit- 
able symmetry groups. 

2. Beyond three dimensions towards higher- 
dimensional crystallography 

The basic assumption is that of Bragg peaks at 
positions expressible as integral linear combination 

* * spanning the three-dimensional o f  t l  vectors al ,...,a, 
space 

k = ( k ,  ..... k , ) .  = ~'. k,a*. (2.1) 
i -  I 

One also assumes that the reflections having an 
intensity above a critical value can be labeled by 
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integral numbers (indices). This implies that they 
form a discrete set, so that for n > 3 a sufficient rapid 
decrease of intensity for high-indices reflections is 
required. All such vectors are elements of a Z- 
module M* with basis {a~ ..... a,, }, rank n and dimen- 
sion 3. The Fourier vectors of the crystal belong to 
M* which is, therefore, also called a Fourier module. 
For n = 3, this Z-module generates the reciprocal 
lattice. If n > 3 and the basis (a*) is independent over 
the rationals, the crystal is incommensurate and thus 
aperiodic. The rationally dependent case also occurs 
when the formalism is extended to crystals forming a 
superstructure. For simplicity, however, if nothing 
else is stated explicitly, we will here assume rational 
independence for the basis (a*). 

The following steps characterize the superspace 
approach, which allows to recover lattice periodicity 
for an n-dimensional ideal structure representing the 
three-dimensional real crystal. 

(1) The three-dimensional (reciprocal) space V* is 
embedded as subspace in an n-dimensional one 

V,.* = V*@ Vfl. (2.2) 

The orthogonal complement Vfl of V* in V~* is the 
internal space. [After the discovery of quasicrystals 
the two components of V~* are often designated as 
parallel and perpendicular components, respectively: 
V* = VII*, Vfl = V* (Katz & Duneau, 1986)]. 

(2) The module basis (a*) is lifted to a basis (a*) = 
a* a* ~ of a reciprocal lattice Z* in V,.*, having s l , . . - ,  ., 'hi 

the basis (a*) as orthogonal projection. Thus 

7rT.*=M* for rrV.,.*= V*. (2.3) 

For a rationally independent basis the projection is 
one-to-one and the elements k, of ~* have the same 
components with respect to (a*) as the elements rrk,. = 
k of M* with respect to (a*) 

k = (k, ..... k,,), ~ k,. = ~. kia.*i. (2.4) 
i - I  

In the same way, to a three-dimensional linear trans- 
formation A of V*, represented on (a*) by an n × n 
matrix (AID, is associated an n-dimensional linear 

a *  transformation A,. of V,.* represented on ( . , )  by the 
same matrix 

(A,k) = A(a*)= A,.(a*). (2.5) 

(3) The Fourier components b(k) of the crystal 
density p(r) are then (uniquely in the incommen- 
surate case) identified with Fourier components at 
the corresponding reciprocal lattice points of an 
n-dimensional density p,., which becomes lattice- 
periodic 

^ d c f  
p.,.(k.,.) =/3(k) for ¢rk.,. = k. (2.6) 

(4) Symmetry related are rotationally equivalent 
Bragg peaks (around the origin) of the same inten- 
sity. As the indexed ones form a discrete set, the 
Laue point group KL, symmetry of the diffraction 
pattern, is finite and so also the corresponding group 
of integral matrices KL(a*)C Gl(n,?£). This group 
represents faithfully a crystallographic point group in 
n dimensions because it is always possible to define 
for the basis (a*) an Euclidean metric tensor left 
invariant by K/.(a*) = K/.(a*). In this way a same n × 
n integral matrix (R,k) represents a three-dimensional 
and an n-dimensional rotational symmetry. 

The Euclidean reciprocal spaces V,.*, V* and Vfl 
can now be identified with the corresponding direct 
ones. The density p.,. describes an Euclidean lattice- 
periodic structure in n dimensions with space-group 
symmetry G.,., which is the ideal crystal obeying the 
rules of n-dimensional crystallography. The relation 
between p.,. and p is simply an intersection 

p.,.(r,.) CI V = p(r). (2.7) 

The Fourier transformation being one-to-one, p.,. 
contains the same amount of structural information 
as p 

FT~ FT~ 
p(r) ~ / 3 ( k ,  ..... k,,) -/3,.(k, ..... k,,) ~---~ p.,-(r,), (2.8) 

where FT,  denotes the n-dimensional Fourier trans- 
form. Therefore, in the incommensurate case an 
extinction in n dimensions implies an extinction in 
the diffraction pattern of the real crystal. 

This scheme contains as a special case the three- 
dimensional crystallography and can be applied to 
most of the known incommensurate crystal struc- 
tures. 

2.1. Systematic extinctions 

Concrete examples of observed extinctions (Tables 
1, 2 and 3) show that the same type of systematic 
extinctions are observed in nature, quite independent 
of the dimension of the ideal crystal. 

2.2. Crystal growth forms 

Crystal growth forms are interesting objects for 
crystallographic symmetry considerations because 
basic structural features become macroscopically 
visible. The point symmetry of the form reveals, first 
of all, the geometric crystal class of the point group. 
The lattice translational symmetry is reflected in the 
law of rational indices which is based on faces 
parallel to lattice planes and on the Bravais-Friedel 
law of the morphological importance of low-indices 
faces (Friedel, 1911). According to Bravais the 
indices of a crystal face can be expressed by the 
components of the Fourier wavevector perpendicular 
to the given face (Bravais, 1850). One then obtains 
from the morphology the ratio of the lattice-cell 
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Table 1. Examples of centering extinctions 

C u A u  1I 
(3 + l ) -dimensional  or thorhombic ,  density modula ted  (Yamamoto .  

1982a) 
Reflections: ha* +- kh* -~ It* + mq: q =/3h* = (Off()).; M* = {a*. h*, c*. 

q} 
Reflection condit ions:  hklm:  h + k = 2n. h + 1 + m = 2n, k ~ I + m = 2n 

Lattice: (3 ÷ I)-dimensional  o r thorhombic  centered 
Centering t ranslat ions:  (~00),  (!0~),  ( 0 ~ )  
Superspace group: F m m m (  l ~ 0 )  

F e , _  , O  (wust i t e )  
(3 + 3)-dimensional cubic modulated,  nonstoichiometr ic  (Yamamoto .  

1982b) 
Reflections: ha* + kb* + It* + mtq ,  + m : q ,  + m~q~; q, = c t a *  = ( a O 0 ) . .  

q: = a b *  = (0a0) , ,  q~ = ac*  = (00a) , ;  M* = {a*, h*, c*, q,,  q, ,  q~) 
Reflection condit ions:  hklm,m~m~: h + k = 2n, k + l = 2n, h + 1 = 2n 
Lattice: (3 + 3)-dimensional cubic F ( 1 , 2 , 3 )  centered 
Centering t ranslat ions:  (~0000), (0~000), (~0~000) 
Superspace group: F m 3 m ( a O 0 )  

Cu9BiS6 
(3 + 3)-dimensional cubic modula ted  (Tomeoka  & Ohmasa,  1982) 
Reflections: ha* + kb* + lc* + m,q~ + m:q:  + m3q3; q, = ( a a a ) , ,  q: = 

( a ~ i a ) , ,  q~ = ( a a i ~ ) , ;  M* = {a*, b*, c*, q,, q:, q~) 
Reflection condit ions:  hk lm ,m:m3:  h + k = 2n, k + 1 = 2n, h + I = 2n, m,  ÷ 

m2 = 2n, m2 + m~ = 2n, m,  + m~ = 2n 
Lattice: (3 + 3)-dimensional cubic F(I ,2 ,3)F(4,5 ,6)  centered 
Centering translations: (~0000), (0~000), (~0~000), (000~0), (0000!~), 

(ooo~o~) 
Superspace group: F m 3 m ( a a a )  

Table 2. Examples of nonsymmorphic group 
extinctions 

TNa2CO3  
(3 + l ) -dimensional  monoclinic modula ted  (van Aalst ,  den Hollander ,  

Peterse & de Wolff,  1976; Brouns, Visser & de Wolff,  1969) 
Reflections: ha* + kb* + Ic* ~ mq; q = ( a 0 y ) , ;  M* = {a*, b*, c*, q} 
Reflection condit ions:  hklm:  h + k = 2n; 00lm: m = 2n 
Lattice: (3 + I)-dimensional  monoclinic C-centered 
Centering translations: (~00) 
Glide: {m,[000~} 
Superspace group: C 2 / m ( a O y ) ( O s )  

S C ( N H 0 2  ( t h i o u r e a )  
(3+  l ) -dimensional  o r thorhombic  modula ted  (Moudden ,  Denoyer,  

Benoit & Fi tzgerald,  1978; Moudden ,  Denoyer  & Lambert ,  1978; 
Yamamoto ,  1980) 

Reflections: ha* ~ kb* + lc* + mq; q = (00y) , ;  M* = {a*, b*,  c*, q} 
Reflection condit ions:  Oklm: k = 2n; hOlm: h + l + m = 2n 
Lattice: (3 + l ) -dimensional  o r thorhombic  primitive 
Space glide: {m~[0~00}; superspace glide: {m,.l~0~} 
Superspace group: Pbnm(OOy)(OsO) 

T h B r 4  
(3 + I)-dimeqsional  te t ragonal  modula ted  (Bernard et al. ,  1983) 
Reflections: ha* + kb* + It* + mq; q = (00y) , ;  M* = {a*, b*, c*, q} 
Reflection condit ions:  hk lm:  h + k + 1 = 2n (/-centering); hk00: h(k )  = 2n; 

hhlm: 2h + 1 = 4n; Oklm: m = 2n 
Lattice: (3 + l ) -dimensional  /-centered tetragonal 
Centering translations: ( ~ 0 )  
Glides: {m:10~0}; {m,_,[0½~0}; {m,]000~} 
Superspace group: 14 /amd(OOy) ( sOsO)  

parameters. These same laws allow to deduce lattice 
centering as well. Finally, nonsymmorphic symmetry 
elements (glides and screw axes) also modify the 
morphological importance of a given set of indices, 
as expressed by the Donnay-Harker extension of 
Bravais-Friedel's law (Donnay & Harker, 1937). A 

Table 3. Example of a quasicrystal 

AIT~Mn22 D e c a g o n a l  p h a s e  
) ' -modules M and M* of rank 5 and dimension 3 (Steurer, 1991) 
Fouri,zr module M* * * = {a~ ..... as } with components expressed in an ortho- 

normal basis of V: a* = a*[cos(2wk/5) ,  sin(2~-k/5), 0] for k = I ..... 4 and 
a* = c*(0,0,1) 

Translational module M = {a~ ..... am} with am = ~a[cos(27rk;5) - I, sin(27rk/ 
5), 0] tot k = I ..... 4 and a~ = c(O.O,I), where a*a = c*c = 1 

Reciprocal lattice "£* in V, = vC)V,, with V, a two-dimensional internal 
sp~tce, direct and reciprocal space being identified: 
a*~ = [a*,a*~], where a*~ = a*[cos(4~'k/5) ,  sin(4~-k/5)] for k - 1  ..... 4 and 
a~, = 0 

Tram;lational lattice ).': a,~ = [a~,a~] with a~ = ~a[cos(4rrk/5) I, sin(4~k/ 
5)] f o r k  = I ..... 4 a n d  a , ~ = 0  

The lattice bases (a,*) and (a,) are reciprocal in the Euclidean five- 
dimensional superspace 

Superspace group: PlO~/mmc 
Occupied positions in ALsMn~ (given is the multiplicity, the Wyckoff  

letter, the site symmetry and the coordinates): 
2 (a') IOta2 00000, 0000~ 
"~ (h') IOta2 ~ ) ,  ~ . . . . . .  ' 

4 (c ' )5m ~ '  . . . .  , ,z . . . . .  ~, a . . . . .  

Atom I and atom 2 are at c' with z = 0.1858 and z = 0.027, respectively 
Atom 3 is at a'  and atom 4 at h'. all with their own pentagonal acceptance 

region YL(i)  

full set of crystal growth forms contains in this way 
the same geometrical information as given in a dif- 
fraction pattern by its point symmetry and by the 
conditions for reflection. The main difference 
between a diffraction pattern and a crystal growth 
form is a missing correspondence between diffraction 
intensity and morphological importance. There are 
good reasons for this: the Bragg intensity is domi- 
nantly determined by the charge at atomic positions, 
whereas the stability of a crystal face mainly depends 
on the bonding charges, as made explicit in the 
theory of Hartmann-Perdok of periodic bond chains 
[PBC (Hartman & Perdok, 1955)]. Nevertheless, an 
indirect relation is certainly present because of the 
structural relevance of both the Fourier wavevectors 
k and of the Fourier components t3(k) of the charge 
distribution. 

Concluding, the whole space-group symmetry can 
be deduced from morphological measurements only: 
not, of course, the absolute length of the symmetry 
translations. 

The morphology of incommensurate crystals is a 
challenging subject because there is no lattice sym- 
metry anymore and thus also no lattice planes for the 
atoms. The superspace approach allows, in this case 
also, a natural extension of the concepts involved, 
with facets which are the intersection in space of 
lattice hyperplanes labeled by the reciprocal lattice 
vectors obtained from the Fourier module M* [see 
Fig. 1 (Janner, 1983)]. 

One then verifies the validity of the classical law of 
rational indices and (even if in a less evident way) 
Bravais-Friedel (Janner, Rasing, Bennema & Van 
der Linden, 1980), Donnay-Harker and Hartmann- 
Perdok. For the latter the PBC's are sets of bonds 
between the extended 'world lines' of the modulated 
atomic positions in superspace (Kremers, Meekes, 
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internal 
space 
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t 
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Fig. 1. Superspace lattice planes (here in three dimensions) giving 
rise by intersection with the physical space (here two- 
dimensional) to crystal growth forms with (normal) main faces 
and (additional) satellite faces. The point group of  the forms in 
space and in superspace is consistent with the embedding of  the 
rotational symmetries [Figs. 13 and 15 of  Janner (1983)]. 

Bennema, Balzuweit & Verheijen, 1994). Despite the 
fact that crystal faces are no more lattice planes, and 
that their microscopic structure is still fairly unclear, 
fiat faces are thermodynamically stable: deviation 
from orthogonality with respect to the Fourier wave- 
vector labeling the face gives rise to a (reversible) 
roughening transition (Dam & Bennema, 1987). It 
has been possible to determine in this way, in addi- 
tion to the ratios of  the average-lattice parameters, 
the variation in temperature of  the components of  
the modulation wavevector (Dam & Janner, 1986). 
Up to an arbitrary unit of  length, the generators of  
the Fourier module M* are, therefore, morpholo- 
gically determined. What is known on the mor- 
phology of  quasicrystals is consistent with the results 
obtained for modulated crystal structures. (See, for 
example, H i ,  1991 and references therein; Janssen, 
Janner & Bennema, 1989.) 

Despite the conceptual relevance of  these results, 
incommensurate crystal morphology is still under 
developed: very little is known so far on the 
morphology of  intergrowth crystals and all the 
investigations on incommensurately modulated 
crystals have been carried out in the Netherlands 
only, mainly in Nijmegen. For this reason it was 
essential to have at our disposal the very careful 
measurements on the mineral calaverite by Herbeth 
Smith (Smith, 1902) and by the team Goldschmidt, 
Palache & Peacock (1931) at a time when incommen- 
surability was still nothing more than an intuition. 

• . 
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Fig. 2. Work sheet with annotations 
of J. D. H. Donnay, dating from 
1954, in one of his attempts to 
solve the puzzling morphology of 
calaverite. It is presented here in 
honor of the man who played an 
essential r61e in the process of 
understanding the morphology of 
incommensurate crystals. It is one 
of the historical documents he gave 
to the author. 



A. JANNER 391 

J. D. H. Donnay suggested to reconsider these meas- 
urements in the frame of incommensurate crystals. 
At that time (1984) he was still not satisfied with the 
interpretation he gave in 1935 in a preliminary com- 
munication [see Fig. 2 (Donnay, 1935)]. Calaverite 
could eventually be shown to be incommensurate 
(Tendeloo, Gregoriades & Amelinckx, 1983), a result 
confirmed by a crystal structure analysis (Schutte & 
de Boer, 1988). By means of a superspace approach 
applied to the measurements of Goldschmidt, 
Palache & Peacock (1931), full agreement could be 
reached between theory and experiment [see Fig. 3 
(Dam, Janner & Donnay, 1985; Janner & Dam, 
1989)]. A Wulff-plot approach, giving a thermodyna- 
mical explanation of the superspace extension of the 

i lOi ~ r ~ 7 , v .  /~  1110 
X , ~  1111 00i2--.,,~ 

0100---~ ~, 

1120 

ii: 

1110 

i112 

1110 

0001 

~ " " ~  1101 
~(-- lO15 

- - ~  11io 

i101 

2113 

2i 

1120 
c I A \  

Fig. 3. The original drawing published in the paper by 
Goldschmidt, Palache & Peacock has been modified in order to 
show the underlying F-module structure of the four-indices 
labeling of the faces in calaverite crystals [Fig. 2(b) of Janner & 
Dam (1989)]. 

law of rational indices, has been developed by Van 
Smaalen (Van Smaalen, 1993). 

3. Beyond discreteness towards positional 
self-similarity 

Most quasiperiodic tilings are obtained by deflation 
(and inflation) procedures generating self-similar 
structures with scaling factors intimately related to 
the orientational symmetry of the tiling. Replacing 
each of the tiles by a corresponding atomic arrange- 
ment (the so-called decoration) leads to models of 
quasicrystal structures having a Fourier module M* 
of finite rank (larger than the dimension), so that one 
can apply the superspace approach (Janssen, 1986). 
The tiling approximation (where the relaxation of the 
structure due to the different local surrounding of a 
given atomic position in space is neglected) corre- 
sponds to a basic structure description. Therefore, 
the translational module M obtained from the 
orthogonal projection into the physical space of the 
lattice of symmetry translations X is dual to M*, and 
it has the same rank (Janner, 1991a) 

d u a l i t y  ~- 
M *,~" X*~ - X - M. (3.1) 

This is the basis of the cut-and-projection method 
(Katz & Duneau, 1986). Translationally equivalent 
points (by X) in superspace give, by projection, 
translationally equivalent points (by M = rrX) in 
space. The corresponding atomic positions differ by 
vectors a which are an integral linear combination of 
a set of vectors {a~ ..... a,} basis of the translational 
module M 

a : ( z , , . . . , z , )  

= Zlal + ... + z ,a ,  with integers zi. (3.2) 

By construction, the n-dimensional point-group sym- 
metry (holohedry) of the lattice X is represented by 
integral matrices R,.(a,) @ GI(n,TZ) which define, when 
reterred to the projected basis (a) for M, a three- 
dimensional rotation R(a) leaving the ~-module M 
invariant 

R M  = M for R • O(3), 

R,.X = X for R., E O(n), (3.3) 

with R.,.(a.,.) = R(Tra.,) = R(a) E Gl(n,~£). Therefore, 
symmetry-equivalent atomic positions in space are 
related by three-dimensional Euclidean transforma- 
tions forming a group G, which is the projection of 
the n-dimensional space group G,. of the embedded 
ideal crystal structure (Janner, 1992). The converse is 
not true, as only superspace positions having their 
internal space component within a given acceptance 
region ~/(which is the atomic surface in the descrip- 
tion adopted in the reciprocal space embedding dis- 
cussed in the previous section) project to points of 
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the decorated tiling (cut-projection). The reciprocal 
space and its embedding in the superspace is the 
most convenient one for quasicrystal structure deter- 
mination (Janssen, 1986; Mermin, 1991, 1992a,b; 
Mermin & Lifshitz, 1992; Rabson, Mermin, Rokhsar 
& Wright, 1991), whereas the direct space and the 
embedding considered now are suited for discussing 
the symmetries of a known quasicrystal structure. 

Within this last description, atomic positions in 
space and superspace are represented by points. The 
acceptance region is the internal component only of 
a superspace region ,t9,. = (/2,O1) separating a set of 
symmetry-equivalent occupied positions into real 
ones, projecting to existing atomic positions, and 
into virtual ones where no atom is observed. The 
space component /2 implies that a real crystal is 
finite, whereas the internal component /21 implies 
that the structure is a discrete one. The former limits 
the largest possible interatomic distances, and the 
latter the shortest possible ones. Both are essential 
for the real structure, whereas it is on the ideal 
structure level that symmetry transformations apply. 
The real structure forms a subset only of the 
symmetry-equivalent occupied positions, which in 
space (for n larger than 3) are dense as required for 
self-similar patterns. 

The symmetry one has to consider for self-simi- 
larity involves positions only, not the charge distri- 
bution in direct space, nor reflections with equal 
intensity in reciprocal space. A necessary condition 
for a point-group transformation A to be a symme- 
try is to leave the set of translationally equivalent 
positions invariant, i.e. the module M, and in order 
to represent self-similar transformations one also 
asks that A is a homothety, which is a rotation up to 
a dilation (or contraction) 

A M  = A M  = M for A E~ H(3), 
and 

A(a) E GI(n,Y£), (3.4) 

where H(3) is a three-dimensional group of homothe- 
ties. (The dilations may involve a subspace only.) 
One recovers the crystallographic discreteness associ- 
ated with lattice symmetry and finite atomic multipli- 
city by lifting the Z-module M to an Euclidean 
lattice 2~, requiring as in the previous section that 
space rotations become superspace rotations. The 
homothety A then becomes an n-dimensional linear 
symmetry transformation As, which cannot be an 
orthogonal transformation of O(n) (because of 
infinite order). In the pure scale case, As can be cast 
to be an element of O ( n -  d,d), but in general it is 
only expressible as a product of a positive definite 
and an indefinite metric symmetry transformation. 
Loosely speaking, the point-group elements of a 
self-similar quasicrystal are, in general, products of 
circular and hyperbolic rotations. 

The corresponding crystallographic positional 
symmetry is thus an affine space group obtained 
from a point group, subgroup of Gl(n,?£), and a 
lattice group. This leads to a multimetrical space 
group having the space group of the structure as the 
Euclidean subgroup (Janner, 1991b). The specific 
conditions implied by these concepts are not essential 
in the present context. It is relevant that the space 
group (or the superspace group) is not a complete 
characterization of the possible symmetries of quasi- 
crystals (Janner, 199 la, 1992). 

The crystallography can be extended to include the 
scaling symmetries of the atomic positions as well. 
To obtain a feeling of the new features, in the space 
and in the superspace, consider a linear transforma- 
tion A acting on the module basis of M 

Aa; = aj Aj,(a). (3.5) 
j = l  

With respect to the Euclidean scalar product (here in 
space) to A, there corresponds a unique adjoint 
transformation A t defined by 

q.Ar---A*q.r for any q ,r  ~ V. (3.6) 

The action of A* on the dual basis of the module M* 
is 

A'a* = ~. a*A~.(a*). (3.7) 
j ~ l  

The same matrices are obtained when considering 
the corresponding transformations A,. and A~ acting 
on the dual lattice bases (a,.) and (a*) with respect to 
the Euclidean scalar product in the superspace and 
for which the duality condition takes the familiar 
form 

* = ~,j ( 3 . 8 )  a si. asj 

From that follows directly 

At(a ,)  t , . = As(a.¢)= ,4~(as)= .4(a). (3.9) 

Note that the step involving an Euclidean superspace 
is necessary, because duality of the ?£-modules in 
space is, in general, not expressible as a scalar- 
product duality between the corresponding bases 
(a*) and (a). 

In order to leave the module M invariant, A(a) has 
to be an element of Gl(n,?£). In that case, A* also 
leaves M* invariant. The same can be said for the 
multimetrical point-group symmetries As of.,Y and As* 
of 2?*. Therefore, to a multimetrical point group K 
leaving M (and correspondingly 2-) invariant, there is 
an adjoint point group K* leaving M* (and 2"* after 
embedding) which is invariant. In general, these two 
point groups are different, but in the case when the 
generators of the point group are either orthogonal 
transformations (as is usual) or hyperbolic rotations 
(corresponding to scalings in V), the two point 
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groups K and K t are the same. Indeed, for ortho- 
gonal transformations R one has 

R* = R-  l, (3.10) 

whereas hyperbolic rotations L are self-adjoint 

L t = L. (3.11) 

The different behavior follows from the property of a 
circular rotation to be antisymmetric and a hyper- 
bolic one to be symmetric when expressed with 
respect to an orthonormal basis. For general homo- 
theties of the type A - - L R ,  however, the groups 
generated by A and by A t = R-~L are different. 

3.1. Examples o f  self-similar modules 

Decagonal case. (Janner, 1992) The three- 
dimensional rank 5 modules M and M* considered 
in the previous section for the A178Mn22 are invariant 
with respect to the scaling S by a factor of z 2 in the 
quasiperiodic plane {where r = ( 1  + 5~/2)/2} giving 
rise to an hyperbolic rotation Ss around the axis as5 
in the superspace. Ss is an element of 0(3,2) leaving 
invariant the indefinite metric tensor gm = ( 1 , 1 , 1 , 1 , 1 )  

of an orthonormal basis of Vs. The symmetry trans- 
formations S and Ss are represented by the same 
integral matrix 

1 0 - 1  - 1  0 

1 2 1 0 0 

S(a) = Ss(a,) = 0 1 2 1 0 = (r2). (3.12) 

- 1  - 1  0 1 0 

0 0 0 0 1 

of the five-dimensional space group PlOs/mmc and 
by the screw hyperbolic rotation 

g5 = {SI0,0,0,0,~}. (3.18) 

In space, g5 corresponds to a screw scaling symme- 
try. In these expressions the point-group elements are 
matrices and the subscript s can be omitted. The 
structural interplay between these symmetries 
becomes evident once one considers the multimetri- 
cal point group Ko leaving the decagonal plane 
(perpendicular to the c axis) invariant 

Ko = {R2,S2,ml,m2R,m2S, RSS, RS} • (3.19) 

K0 is the homothety symmetry group of a self-similar 
pentagram, involving an infinite series of scaled regu- 
lar pentagons. From a superspace point of view, 
pentagram and regular pentagon are external- 
internal dual (Senechal, 1994), both in the direct and 
in the reciprocal space. By this we mean that con- 

This transformation permutes the two atomic posi- 
tions 1 ~ ~ l _ 4444_ 2 2 2 2 _  3333., 3333Z, 3333 z, and the other two 333~z, 5555~, 
exactly as the tenfold rotation R (and Rs, respec- 
tively) 

R(a) = R~(a~)= 

0 0 - 1  0 0 

0 0 0 - 1  0 

1 1 1 1 0 

- 1  0 0 0 0 

0 0 0 0 1 

= lO. (3.13) 

Therefore, the quasicrystal structure of A178Mn22 
presented above is left invariant by the multimetrical 
space group Gs generated by the lattice translations 
2, together with the elements 

gl = {R[0,0,0,0,½} : 105, 

g2 = {mll0,0,0,0,0} = ml, 

g3 = {m210,0,0,0,½} = c, 

g 4  = { m z l 0 , 0 , 0 , 0 , 0 }  = mz 

(3.14) 
(3.15) 
(3.16) 
(3.17) 

Fig. 4. After having recognized the existence of a pentagrammal 
rotation/scale symmetry in the decagonal quasicrystal AI78Mn22 
(Janner, 1992), the idea came to verify whether that was also the 
case for the icosahedral A16Mn phase. The result is shown on a 
photograph sent with the New Year's greetings for 1986 by the 
colleagues of the Center for High-Resolution Microscopy of the 
University of Antwerpen (RUCA). 
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sidering a pentagon defined by the sequence a~, a*, 
a*, a*, a*, ag (where ag = -~-~.i4= i a~) one obtains a 
pentagram from the corresponding sequence of inter- 
nal components a*o, a*~,...,a*~o of the basis (a*). 
Conversely, to the pentagram sequence ag, a*, a4*, 
al*, a~', a~' corresponds to an internal pentagon. 
Analogous properties are found in the direct space. 
A same pentagrammal structure appears in the dif- 
fraction pattern and in a HREM picture of the 
icosahedral A16Mn phase (see Fig. 4). 

Octagonal case (Janner, 1991a). In exactly the 
same way one arrives at an external-internal 
octagon-octagram duality and to a self-similarity 
point group of homotheties leaving invariant the 
translational module M (and the Fourier module 
M*, respectively) of an octagonal aperiodic tiling. 
Despite the fact that the structure of the octagonal 
CrNiSi alloy obtained by Kuo has not yet been 
determined, a HREM picture presented in a poster 

Fig. 5. In the HREM picture of the octagonal CrNiSi alloy 
presented by K. H. Kuo at the International Crystallography 
Congress of the IUCr in Perth (Kuo, 1987), the octagrammal 
rotation/scale symmetry is made visible. 

at the Perth meeting of the IUCr (Kuo, 1987) gives 
experimental evidence of the octagrammal symmetry 
of this quasicrystal (see Fig. 5). 

Restricting for simplicity the considerations to the 
plane and, correspondingly, to a four-dimensional 
multimetrical superspace, one has: 

(1) A two-dimensional rank-four-translational 
module M = {al,...,a4} defined by the vectors a k --- 
a(cos 27rk/8, sin 2zrk/8), for k = 1 .... ,4. 

(2) A translational lattice ~ = {asl,...,as4 } with 

ask = (ak, a/k) where alk = a3k. (3.20) 

(3) The point group of the self-similar M with as 
generators: a scaling S with scaling factor ~ = 2~/2+ 1 

(, , o 
S ( a )  = 1 1 1 0 = 

0 1 1 1 

T o 1 1 

an eightfold rotation R and 

0 0 0 

R(a) = 1 0 0 
0 1 0 

0 0 1 

(21/2+ 1), (3.21) 

a mirror m 

i 

0 

0 ' 

0 

0 0 0 1 ) 

m(a) = 0 0 1 0 . 
0 1 0 0 

1 0 0 0 

(3.22) 

The multimetrical point-group symmetry of the octa- 
gram (leaving the octagonal quasicrystal phase 
invariant) is 

Ko = {R,m,S} = 8mm(21/2 + 1), (3.23) 

where ( 2 m +  1) symbolizes S by its scaling factor. 
The atomic positions occupied in the octagonal 
phase of the CrNiSi alloy are expected to be left 
invariant by a multimetrical space group having at 
least this point group. 

4. Beyond Euclidean metric, towards multimetrieal 
crystallography 

Taking into account scaling symmetries in quasicrys- 
tals together with the rotational ones within a lattice- 
periodic description of the structure (according to a 
superspace approach) leads to consider higher- 
dimensional affine point groups generated by circular 
rotations (for the rotational symmetries) and hyper- 
bolic rotations (for the scaling symmetries). The 
compatibility between Euclidean and pseudo- 
Euclidean transformations is ensured by the condi- 
tion for both to leave a same lattice of symmetry 
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translations invariant. The superspace symmetry 
group of a self-similar quasicrystal (in the sense 
explained in the previous section) is, therefore, a 
multimetrical space group which combines, in the 
usual way, point group and lattice symmetry (Janner, 
1991b). 

The belief in the existence of a more comprehen- 
sive crystallography for all crystal structures 
observed in nature is at the basis of an attempt to 
understand the possible physical relevance of multi- 
metrical space-group symmetry for ordinary crystals 
(Janner & Nusimovici, 1994). In this exploration one 
has to keep in mind two basic facts about multi- 
metrical symmetry which have already been pointed 
out in the case of quasicrystals. First, the symmetry 
applies to atomic positions (and not to charge 
density). Second, in normal crystals this symmetry is 
usually broken. Two simple cases will be considered 
as an illustration, the first is based on the two- 
dimensional hexagonal lattice, the second deals with 
the three-dimensional lattice of an ideal hexagonal 
close-packed structure [for which one has c/a = 
(8/3)1/2]. The ideas will be presented without explor- 
ing theoretical details. 

4.1. Hexagonal  two-dimensional mult imetrical  space 
groups 

The hexagonal lattice Aa~ is generated by the basis 
vectors 

al = a(l,0), a2 = a ( -  1/2, 3]/2/2) (4.1) 

with components expressed with respect to an ortho- 
normal basis el, e2 defining the Euclidean metric 
tensor ge = ( 1 , 1 ) .  As is well known, Aa~x is invariant 
with respect to the Euclidean point group K0 -- 6mm = 
{R,m0}, with R a sixfold rotation and m0 a mirror 

1 i0) and m 0 ( a ) = ( l  1 R(a) = (1 0 1)" (4.2) 

The mirrors of the form 

mk = Rkmo = mo R - k  (4.3) 

generate rotations according to 

m j  , k m j  = R k. (4.4) 

Consider now an hyperbolic rotation L with eigen- 
values 2 +_ 3 i/2 

= (4.5) 
L(e) = \ sinhx coshx] 1/2 2 ' 

leaving the pseudo-Euclidean metric tensor g,,, = 
(1,1) invariant, where 1 is - I .  One verifies that L 
also leaves the lattice Ahex invariant. Indeed 

Lal = a(2, 31/2)  ---- 3a, + 2a2 

La2 = a(1/2, 3~/2/2) = al + a2, (4.6) 

Table 4. Mult imetr ical  space group G = p64 

A n u m b e r  o f  these orbi ts  are noncharac ter i s t ic ,  as one can see by 
compar i son  with co r respond ing  ~ t s  o f  equivalent  posi t ions  for the 
mul t imetr ica l  space g roup  p6mm4 (Table 5). 

W y c k o f f  Site Coord ina t e s  
Mult ipl ic i ty  letter s y m m e t r y  o f  equivalent  posi t ions  

I (a) 6~ 0,0 
2 (b) 3~d ~, ~ ~, 
3 (c) 2a ~ ~,o o,~ ~, 
6 ( d ) l  .~2 11 5 2 1 1  1 5 2 5 5 1 ( X = ~ ,  = ' 

6 (d)2 .~," ~,0 0,~ ],~ ~,0 0,~ ~,~ (x = ~, y = 0) 
12 2(d)l .~,' ],0 --- ~,I (x. = ~, y, = 0; x~, = ~, y: = :~) 

18  3 ( d ) l  iz~ ~ ~ , 0  • g,]~ . . . . .  - -  g,~ (x , , y , ;  x 2 , y 2 ;  x 3 , Y O  

18 3(d)2 .z]6 g,+ . . . .  ~,~ ~,~ - 

24 4(d) I .~,~ ~,0 ~,0 ~], ~ 3 ' _ _  _ ~,~ .... 

24 4(d)2 .~, . . . .  ~ , 7 

so that (3,) 
L(a)= 2 l"  

In the same way as for the circular rotation R, 
hyperbolic mirrors rhk also leaving the lattice 
invariant 

fit k = t k f f t o  with rho = mo (4.8) 

generate hyperbolic rotations L k 

(4.9) 

Note that mo: e l - - - ' - e l ,  e2---'e2 leaves both the 
Euclidean and the pseudo-Euclidean metric 
invariant. A hyperbolic mirror has the general form 

rh(e)= ___( coshq~ sinh~o) (4.10) 
- sinh~o - cosh~o 

and reflects a point along a line having, together with 
the mirror-invariant line, the directions of the iso- 
tropic vectors (the light cone) as bisectors. 

Summarizing: the hexagonal lattice Ah~x has as 
multimetrical symmetry the point group 

K = {R,mo,L} = 6ram4 = 6mm(2 + 31/2), (4.11) 

where the generator L has been symbolized, as in 
previous publications, by 2cosh,t' (which is here 
equal to 4), or by its eigenvalue A = 2 + 3 I/2 , the 
other eigenvalue being the conjugated one A ' =  2 -  
3 I/2" 

Examples of symmorphic multimetrical hexagonal 
space groups can easily be obtained by adding, for 
example, a pseudo-Euclidean point-group symmetry 
to the generators of hexagonal space groups. So 

p64 = {Ahex, R ,L} ,  p6mm2~ = { Ah~x,R,mo,L}, p3ml~, 2 

= {Ahex, R2,mo,L2}, (4.12) 

and so on. The general position of a multimetrical 
space group is of infinite multiplicity and, therefore, 
excluded for atoms in crystals. The low-multiplicity 



396 CONFERENCE PROCEEDINGS 

Table 5. Multimetrical space group G =-p6mm4 

Wyckoff Site Coordinates 
Multiplicity letter symmetry of equivalent positions 

I (a) 6mm;~ 0,0 
2 (b) 3m.4 2 ,2 ~ ~,3 . ,. 
3 (c) 2ram4 2 ~,0 0,~ ½,~ 
6 (d)l  . .m4 6 ],01 0,~ 22~,~ ~.0 O, 3 ~,~ (X = ~, .Y = 0) 
6 (e) l .m.,~ 2 t : 5 2 J , J s 2 5 ~ , (X = I) 

cases, however, show surprising compatibilities 
between Euclidean and multimetrical space groups. 
As an illustration, in Table 4 a number of sets of 
equivalent positions is given for the multimetrical 
space group p64 (see also Table 5). Indicated also are 
the multiplicities, the site symmetries and labels given 
by letters taken from those of the Euclidean sub- 
group p6. The integer preceding the Wyckoff letter 
indicates the number of Wyckoff sets obtained when 
restricting to the Euclidean subgroup. The number 
after the letter is a sequential index. For the multi- 
plicities 12 and higher, a representative only is given 
for each set of coordinates belonging to a sixfold 
rotational orbit. This is also suggested by indicating 
some of the corresponding x,y parameters involved. 
(--)  indicates the missing coordinates. 

Because of the occurrence of fairly large multipli- 
cities, one needs a graphical representation of the 
various sets of equivalent positions in order to grasp 
their structural features. Looking at these pictures, 
one recognizes that the interplay between circular 
and hyperbolic rotations gives rise to families of 

• • • • 

• • • • 

• • 

• v ~ 

. . . . . . . . . . . . . . . . .  . k  
o o o o o o o o o o o o o o o o o  

, , , o o ° , , , , , o o ° o o o , , , ¶  
e ~ o o o o o o o o o o o o o o o o o o ~  

q o o o o o o o o o e o o o o o e o o ~  
~ g o o o o o o o o o o o o o o o o o  

. . . . . . . .  . . . . . . .  v.'_ . %  
o % o o o o o e o o o o o e o o o o o e ~  
O ~ o o o o o o o e o o o e o e o o o o ~  

• , o o  . . . . . . .  • . . . . . .  o o ~  \ . . . . . . . . . . .  : : : : : . k  o o o o o o o o o o o o o o o o o o  
o o o o o e o o o o o o  j ° ° ° ° °  

~ o o e o o o o e o o o o o o o o o o ~  
o ~ o e g ~ o o o o o o o 6 o o o o o o o o  

o o o o o o o o o o o o o o o o o o  
o o o o o o o o o o o o o o o o o o  

Fig. 6. Lattice-like ~ ts  of p~-equivalent  positions having site 
symmet~  4J and 4~, respectively. The missin~ points ~ l o n g  to 
an orbit of  multiplicity I and site symmetry 4 ( ~  Fig. 7). 

Wyckoff orbits having a group-subgroup relation in 
the site symmetry and which are relatively scaled 
with respect to each other. 

The simplest family, with points invariant with 
respect to odd powers of the basic hyperbolic 
rotation 4, consists of hexagonal lattice points 
having decreasing lattice parameters: a for ~,, a/5 for 
,~3 and a/19 for 45 (see Fig. 6). These specific ratios 
appear to characterize the diffraction pattern of the 
commensurate modulated phase of niobium ditellu- 
ride NbTez (van Landuyt, van Tendeloo & 
Amelinckx, 1974), an intriguing observation whose 
meaning has still to be understood (see Fig. 7). 

A second family consists of hexagrams forming a 
Kagom6 lattice and appears with site symmetry ~z 
(multiplicity 3), ~: (multiplicity 12) and ~6 (multi- 
plicity 48), respectively, scaled by a factor of 2 (see 
Fig. 8). 

A third family can be described as consisting of 
hexagons linked by regular triangles, with multi- 
plicity 6 for site symmetry 2~2, multiplicity 24 and 96 
for site symmetry ~4, each also scaled by a factor of 2 
(see Fig. 9). 

Still another family forms honeycomb patterns of 
various sizes and orientations and more complex 
atomic arrangements within one single orbit are also 
observed because of missing points which belong to 
an orbit of lower multiplicity (see Fig. 10). 

Such planar arrangements are easily recognizable 
to occur (in a more or less deformed version) in 
many inorganic compounds, in particular those 
which can be described in terms of a close-packed 
structure (Wells, 1950). One more reason to look 
now at the multimetrical symmetry of the lattice of 
an ideal hexagonal close-packed structure. 

4.2. Hexagonal three-dimensional multimetrical space 
groups 

The examples given above have, of course, a 
straightforward generalization to the hexagonal 
three-dimensional space groups, as the hyperbolic 
transformation ~, can be considered to be an hyper- 
bolic rotation around the hexagonal axis. We now 
investigate the possibility of having additional hyper- 
bolic symmetry rotations around other axes. This 
implies a metrical relation (not present in the 
Euclidean case) between the a and the c parameter of 
an hexagonal lattice. Such a relation is well known to 
occur for lattices of close-packed structures. Here we 
will restrict our considerations to the lattice Ahcp of 
an ideal hexagonal close-packed structure, for which 
the c/a ratio is (8/3) '/2. 

The basis vectors of the lattice Ahcp can be chosen 
as  

al = a(1,0,0), a2 = a ( -  1/2, 31/2/2,0) 
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Fig. 7. Diffraction pattern of the commensurately modulated 
crystal of NbTe2 (van Landuyt, van Tendeloo & Amelinckx, 
1974) with an underlying 5 × 5 and 19 × 19 hexagonal unit cell, 
to be compared with the Wyckoff sets of equivalent positions of 
the multimetrical space group p621, which suggest a kind of 
multimetrical 'star of k' structure for the weak satellite reflec- 
tions. 

w 

Fig. 8. Kagom6 lattices formed by sets ofp64-equivalent positions. 
In Table 4 the first two are denoted by (c) and by 2(d) l, 
respectively. 

and  

a3 = c(0,0,1) = a[0,0,(8/3)1/2]. (4.13) 

To  derive a mul t ime t r i ca l  p o i n t - g r o u p  s y m m e t r y  o f  
Ahcp (we are at present  still unab le  to ob ta in  the full 
po in t  symmet ry ) ,  one considers ,  in add i t i on  to the 
Euc l idean  metr ic  t ensor  go, o ther  p seudo -Euc l i dean  
g~, tensors  a t t ached  to the same basis 

g0(e) = (1,1,1), g~(e) = (1,1,1), g2(e) = (1,1,1), 

g3(e) = (1,1A), (4.14) 

where  T is - 1 .  The  n o t a t i o n  reflects the choice for 
the indefini te  metr ic  tensor  gj of  the d i rec t ion  of  the 
' p seudo- t ime '  axis, i.e. of  the uni t  vector  eo o f  
negat ive  squared  length:  eo = ej for  j ~ 0. 

The  scalar  p roduc t s  a j~  ak are expressible  in te rms  
of  the set o f  metr ic  tensors  gu given above.  As an  

Fig. 9. Families of p6~,-equivalent positions appearing as a lattice 
of hexagons linked by regular triangles (that link is not shown 
in the pictures). The first two sets are indicated in Table 4 as 
Wyckoff positions (at)1 and 4(d)2, respectively. 
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illustration we will consider the gj(a) metric case. 
One then h a s e  2-- - 1 ,  e 2 = e  2= 1 a n d e i o e k - - 0  for 
i ~ k. Therefore, one easily derives 

a~ = - a  2, a 2 = - l / 4 a  2 + 3 / 4 a  2 = l/2a 2, a3 = 8 / 3 a  2, 

a~oa2 = l/2a 2, a~oa3 = 0, a2oa3 = 0. (4.15) 

In this way one finds 

g,,(a) : a 2 
0 

0 

0 0 

cal point group for A~,,.p 

K = {Rz, mx, my, m., Lx, Ly, Lz} 

= 6 / m m m ( 3 4 ) ( 9 8 ) ( 4 ) ,  (4.18) 

where now the integral value of 2coshx for the 
corresponding generator is given in brackets. 

At this stage, one can hardly believe that such 
large-angle hyperbolic transformations do have any 
structural meaning. A preliminary investigation of  
(ideal) close-packed structures leads, however, to the 
conclusion that these additional symmetries are, at 
least from a geometrical point of  view, intimately 

g,(a) = a 2 
- 1  

I 
2 

0 

g2(a) : a 2 1 1 
2 2 

0 0 

0) 
g 3 ( a ) = a  2 - ~  1 0 . (4.16) 

0 

We already know that Lz = ~, leaves Ah,.p and the 
indefinite metric tensor g2 invariant (and gl also). 
This same lattice is also invariant by an hyperbolic 
rotation L.~ with cosh¢ = 17 around the x axis and 
by another with cosh~b=49 around the y axis. 
Expressing these generators with respect to the lattice 
basis (a) one finds 

Lx(a) = 

m 

1 8 16 

0 17 32 0317 

/ 
\ 

Ly(a) = 

49 24 80 

0 1 0 

30 15 49 

Lz(a) = 

3 1 0 

2 1 0 

0 0 1 

(4.17) 

As in the two-dimensional case, all these rotations 
are generated by hyperbolic reflection symmetries of 
the lattice Ahcp,  which involve the mirrors sharing a 
pseudo-Euclidean metric tensor invariance and the 
Euclidean one (as discussed in the two-dimensional 
case). Thus, one arrives at the following multimetri- 

Fig. 10. Families of Wyckoff sets of the multimetrical space group 
p63, forming honeycomb arrangements. The first two corre- 
spond to the positions (d)2 and 3(d)2 of Table 4. In the last 
picture, the missing points belong to another honeycomb orbit 
with multiplicity 2 [denoted by the Wyckoff letter (b) in the 
same table]. 
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connected with the structure. In order to present 
some of these aspects a multimetrical space group 
leaving the Wurtzite structure type invariant will be 
considered. 

4.3. The ideal wurtzite crystal structure: a multi- 
metrical analysis 

Wurtzite (hexagonal ZnS) has space group Go = 
P63mc. The observed c/a ratio is 1.6363 (Ulrich & 
Zachariasen, 1925), whereas that of the ideal closed- 
packed structure assumed here is (8/3) ~'2. Occupied 
are b positions with fractional coordinates ~, ~, z and 
2 I I 3, 3, 2 + z. For the first atom S = X one has z = 0, 
whereas for the second atoms Zn = Y the value is z 
= 0.375. 

One then verifies that this structure is left 
invariant, in addition to the Euclidean generators 

g, : {R:I0,0,~}, g2 : {mxl0,0,~}, 
g 3  = {m.vI0,0,0}, (4.19) 

by the following pseudo-Euclidean ones 

g4 = {L.-10,0,~}, gs = {Lxl0,0,~}, 

g 6  = {Lyl0,0,0}. 
Indeed, for example 

- -  1 1 8 16 3 

L,:Y~. = 0 17 32 _23 

0 9 17 0.375 

(4.20) 

2 2 
3 + 5 - 6  3 

I I = ~ + 1 1 - 1 2 - -  

- 6 + 6 . 3 7 5  0.375, 

(4.21) 

implying g5 YI = Y2. In the same way one finds that 
gs Y2 = Y~ and that also X, and X2 are permuted. 

Considering now the multimetrical space group G = 
{Ah,.p,g~ ..... g6}, one sees that to obtain a multiplicity- 
two position, instead of an arbitrary value for the 
parameter z in the Wyckoff positions (a) and (b), a 
rational value z = n/16 (with given integer n) is 
required: in that case the site symmetry instead of 3m 
becomes at least 3mL]LyL 2. 

This condition is fulfilled not only by the atoms of 
the close packing (n = 0), but also by those at the 
tetrahedral sites (n = 6 and n-- 10, respectively) and 
at octahedral sites (n = 4). A same situation is found 
in the case of the other lattices of ideal close-packed 
structures. Each of these lattices can be obtained by 
centering of an orthorhombic primitive lattice with 
parameters a, b = 2~/2a and c = 3'/2a. The multimetri- 
cal extension of P63/mmc considered above shares 
many of the properties of the multimetrical extension 
of the five-dimensional space group PlOJmmc. Actu- 
ally, the study of the scaling properties of the decag- 
onal AI78Mn22 phase was the basis for the 
multimetrical description of the Wurtzite structure 
(and not the converse). 

Considering all that, one becomes motivated to 
investigate further, trying to understand the still 
hidden meaning of this new way to look at Euclidean 
crystal structures. In any case, the additional multi- 
metrical symmetries are a way of characterizing 
Euclidean metrical relations not expressible in terms 
of Euclidean symmetries. 

The strength of the present approach is that it 
leads to the identification of crystallographic symme- 
tries hidden until now which can give rise, in particu- 
lar, to additional extinctions in the diffraction 
pattern and it allows the same crystallographic sym- 
metry characterization for crystals and quasicrystals. 
The weakness is that it may require an idealization of 
the structure of a given crystal and a discretization of 
the atomic positions to appropriate rational values. 

5. Perspectives 

In a somewhat sketchy way and without pretending 
to have a clear view about future developments, let 
me indicate some aspects on which I would like to 
obtain a better insight. 

5.1. Metrical embedding of  modulated structures 

For explaining the problem, consider a Fibonacci 
chain described as a one-dimensional modulated 
crystal structure. Using the quasicrystal embedding 
on a square lattice, both 7Z-modules M and M* do 
have rank 2, whereas using the standard modulated 
crystal embedding (based on a set of main reflec- 
tions) M* has rank 2 but M only rank 1 (and takes 
into account the properties of the averaged struc- 
ture). In the first description all atoms of the 
Fibonacci chain are translationally equivalent, 
whereas they are not so in the modulated descrip- 
tion. Clearly, in order to explore beyond the stand- 
ard embedding one needs some information on the 
amplitude of the modulation (information typically 
obtained from Patterson). Moreover, the form of the 
modulation wave is also relevant: a squared wave (to 
be expected near the lock-in transition or in nonstoi- 
chiometric crystals) leads more naturally to a metri- 
cal embedding (for which M and M* do have the 
same rank) than when a sinusoidal wave is a good 
approximation. 

5.2. From positional to intensity relations for scaling 
symmetries 

In crystallography the same intensity is required 
for symmetry-equivalent Bragg reflections. However, 
this need not to be the case in general. For many 
symmetries in physics (typically expressed through 
group representations) it is the ratio between corre- 
lated amplitudes which is relevant, not the same 
value (consider, for example, the Wigner-Eckart 
theorem). Coming back to Fibonacci again, the same 
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diffraction intensity can be obtained after deconvol- 
ution by the window function, or by averaging to 
what could represent the main reflections. It seems to 
me that both ways are available for a better treat- 
ment of scaling symmetry in quasicrystals: deconvol- 
ution and averaging. The first approach corresponds 
to deconvolute with respect to a superspace crystal 
form (as usually done with respect to the shape of a 
crystal); the second reflects a way of considering 
scaling symmetry in structures as a process where 
atoms form clusters which are similar to clusters of 
those clusters. The approach could then be 
analogous to that in the theory of 'real-space 
renormalization', where a new effective Hamiltonian 
is defined at each stage of a rescaled system. In the 
crystallographic case this would imply the re- 
placement of the stucture factor of a cluster of atoms 
(with corresponding atomic factors) by a new effect- 
ive structure factor representing the cluster of one (or 
more) rescaled pseudo-atom(s). 

5.3. Fractal atomic surfaces for quasicrystals 

The point of view presented here of an atomic 
surface as the internal part of a crystal form in 
superspace, in order to become fully satisfactory 
needs a better characterization of the possible crystal 
forms in terms of the symmetries of the (ideal) 
structure: for example, by an appropriate indexing of 
the flat pieces of the boundary (like Bravais had done 
for the crystal growth forms). One already knows 
that the fractal character of an atomic surface roots 
in the self-similarity of the underlying quasicrystal 
structure (Godr6che, Luck, Janner & Janssen, 1993; 
Luck, Godr6che, Janner & Janssen, 1993; Zobetz, 
1992, 1993). However, soon outside the one- 
dimensional case, the variety and complexity of the 
possible shapes represent a severe handicap. Possibly 
a larger experience of the multimetrical symmetries 
of normal crystals could be of great help. As a side 
remark in this respect as asymptotically an hyperbo- 
lic transformation becomes a scaling, if multimetrical 
symmetries are structurally relevant one should be 
able to see asymptotic consequences in the form of 
scaling behavior. Indeed, hexagrammal scaling 
properties can be recognized in snow crystals. 
Several examples can be found in the photographic 
pictures taken by Bentley & Humphreys (1931) as 
one can see, in particular, on p. 141 (No. 11) and on 
p. 188 (No. 12) of their book (Bentley & Humphreys, 
1931). To find out the precise nature of such struc- 
tural relations in dendritic crystal forms requires, 
however, a more detailed investigation. 

5.4. Nonindexable Bragg reflections 

Nonindexable is a diffuse diffraction intensity 
which represents a lack of long-range order. How- 

ever, that is not necessarily the case for all non- 
indexable reflections having measurable intensity. 
One of the reasons is the existence of rotations of 
infinite order, leaving invariant a ?2-module M of 
rank larger than the dimension (Le Tu Quoc Thang, 
Piunikhin & Sadov, 1993). It deserves attention to 
study possible realizations of a (incommensurate) 
crystal with such infinite-order rotational symmetries 
and to consider the algorithm required for the syn- 
thesis (at least approximately) of such a structure. 
One would then eventually obtain nonindexable dif- 
fraction rings similar to those observed on powder 
diffraction, but now for a structure having a long- 
range order. 

5.5. Concluding remarks 

One could only scratch the surface of a more 
comprehensive crystallography. Fortunately, what is 
missing here can be filled by excellent reviews and a 
fairly large number of papers devoted to incommen- 
surate crystal structures and to quasicrystals. Only 
some of these publications could be quoted here and 
I apologize for that. 

Thanks are expressed to Sander Van Smaalen for 
having put at my disposal the preprint of his valu- 
able review article on incommensurate structures, to 
Marjorie Senechal for having sent to me the prelimi- 
nary draft of her book Quasicrystals and Geometry, 
to G. J. Heckman for having drawn my attention to 
the paper by Le Tu Quoc Thang, Piunikhin and 
Sadov and to A. H. M. Thiers for his critical 
remarks. The program developed by him in colla- 
boration with M. J. Eprhai'm helped me to check the 
existence of additional special reflection conditions in 
multimetrical space groups. 
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